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Abstract

This study is to simulate stable bed forms of an alluvial channel with soft poroelastic bed caused by a constant
current accompanied with water wave. Since a boundary layer exists within the soft porous bed near the homogeneous-
water/porous-bed interface, conventional Stokes expansion, which only uses one parameter, & = kya, fails to estimate
the second longitudinal wave inside the soft poroelastic bed. In order to overcome this difficulty, a boundary layer
correction approach applying Biot’s theory of poroelasticity (J. Appl. Phys. 33 (4) (1962) 1482) for soft porous bed is
proposed to simulate bed forms of dune, antidune, and flat bed by a two-parameter perturbation expansion based on ¢,
and & = ky/k, in the present study. A new Runge-Kutta/Newton-Raphson method to find wave numbers is also
proposed, which can trace bed forms of different categories continuously, including dune, antidune and flat bed.
Although we do not use an empirical sediment transport formula as Kennedy (J. Fluid. Mech. 16 (1963) 521) did, the
present result not only confirms the stable dune and antidune of Kennedy (1963), but also finds a rapidly damping wave
that Kennedy (1963) could not get. The dimensionless lagged distance Re(ky)d in this study confirms Kennedy’s
(1963) comment and is found to be 0, w, or 2n for stable dune and antidune when the dissipative parameter,
log (Im (ko) /Re (ky)), goes down. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In hydraulic engineering, the formation of bed form in an alluvial channel is one of the most concerned
problems. Wave and current are both interrelated with bed form in an alluvial channel. Besides, the in-
teraction between porous bed and homogeneous water flow is even more complicated. Therefore, step-
by-step, studies of this field have been changed from linear flow to nonlinear flow and from rigid bed
material to poroelastic bed material.

Putnam (1949) began the investigation on a linear water wave interacting with a porous bed. Then,
Reid and Kajiura (1957) studied the porous bed problem by considering linear wave in an inviscid, in-
compressible and irrotational fluid flow satisfying Darcy’s law interacting with a rigid, isotropic porous
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skeleton. Sleath (1970) and Liu (1973) further improved the studies. However, all the aforementioned
studies focused on the rigid bed material affected only by linear wave. As to nonlinear water wave problem,
Mei (1983) and Fenton (1985) studied nonlinear wave in deep water on an impermeable rigid bed by Stokes
expansion.

On the other hand, as for the bed form formation, Darwin (1883—-1884) conducted experiments on sand-
ripple caused by a oscillatory bed motion and concluded that the roller induced by a series of vortex acting
on the sandy bed would probably render unstable ripple into stable state. Bagnold (1936) explained that the
instability of dune of dessert was due to the impact of sand by wind. Exner (1925) established a differential
erosion equation for two-dimensional flow, which indicated that the change in bed elevation was due to
longitudinal variation of bottom velocity. Anderson (1953) applied Exner’s (1925) erosion equation to
explain the mechanism of the formation of ripple. However, the mechanism of dune and antidune is
somehow different from that of ripple. Kennedy (1963) applied an empirical sediment transport formula to
govern the continuity of the porous bed. And he used the instability analysis of potential theory to obtain
his famous results of dune and antidune formations in alluvial channels. Unfortunately, owing to the
constraint of instability analysis, Kennedy (1963) could only find the dominant wavelength of stable bed
forms instead of the whole bed forms.

In fact, fluid within porous material interacting with deforming solid skeleton is a more complicated two-
phase problem for a realistic analysis. Biot (1956) developed theory of poroelasticity to discuss elastic wave
in a fluid saturated porous solid. Mei and Foda (1981) proposed a boundary layer correction to simplify the
analysis; however, their approach was without systematic perturbation analysis. Huang and Song (1993)
solved the problem of oscillatory linear water waves interacting with a deformable bed by using three
decoupled Helmoltz equations derived in Huang and Chwang (1990) to treat the bed as a poroelastic
material. And in their solution, five nondimensional parameters were derived. Chen et al. (1997) also ap-
plied Huang and Chwang’s (1990) approach and the conventional Stokes expansion of deep water wave
based on ¢ = koa to investigate the dynamic response of permeable bed material to nonlinear water waves.
They found that the conventional Stokes expansion is only valid for hard poroelastic bed material but
invalid for soft one even though the Ursell parameter is small. Huang and Chiang (1998) simulated stable
bed forms under a constant current and linear oscillatory water waves by an approach similar to that in
Huang and Song (1993). In the work of Huang and Chiang (1998), various bed forms of dune, antidune and
flat bed under linear oscillatory water waves accompanied with a constant current were obtained. And the
ambiguous lagged distance ¢ that has bothered researchers in river mechanics for many years was solved.
Although a more clear hydraulic mechanism of formation of bed forms was found in the work of Huang
and Chiang (1998), a much time-consuming method, however, was adopted.

For the stable bed form of a constant current flowing over a semi-infinite soft poroelastic deforming bed
accompanied with nonlinear water waves (Fig. 1), a systematic two-parameter expansion based on ¢ and
& = ko/ky (Fig. 2), instead of the conventional one-parameter Stokes expansion based on g, will be
demonstrated in the present study. Moreover, a fast and automatically modified wave number solver
combining Runge-Kutta method with Newton—Raphson method will be proposed.

2. Formulation

Fig. 1 indicates stable bed form formation of an alluvial channel caused by the plane waves propagating
over a horizontal, infinitely thick and homogeneous poroelastic bed accompanied by a constant current.
Region 1 is homogeneous water treated by potential theory while region 2 is a semi-infinite porous medium
saturated with water simulated by the theory of poroelasticity by Biot (1962). The coordinate of region 1
ranges from y = &"(x,7) to y = h + n*(x, 1), and that of region 2 from y = £*(x,¢) to y — —oo. The symbols



P.C. Hsieh et al. | International Journal of Solids and Structures 38 (2001) 4331-4356 4333

—— N (norefy=h

y=h

h Region 1

i*(x, t),ref.y=0
/ y=0

—

y —>Ue,

t

Fig. 1. Definition sketch.

linear wave

nonlinear

wave

Fig. 2. Schematic diagram of the two-parameter expansion.

n* and & represent the displacements of waves from the mean free surface (y = 4) and mean bed interface
(v = 0), respectively.

2.1. Boundary value problem

Assuming that the homogeneous channel flow, region 1 of Fig. 1, is potential flow, the velocity vector u;
can be represented by potential function &} as

i = V. (1)

Since the flow velocity may be written as a given constant current in the x direction (i.e. Ue,) plus a
perturbed velocity u*(!, thus,

uj = Ue, +u'V. (2)

By letting
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o, = Ux + oV, (3)
the following relation:

Ve =y (4)

is satisfied.
The equations of continuity and momentum in terms of velocity potential *!) become

Ve =0, (5)

a0 p, a1’ Tagr7?
i U P*(]):O 6
p061+2[+6x}+{6y}+ : (6)

where P*(V is the perturbed pressure of homogeneous water, and p,, the water density.
Referring to the work of Huang and Chwang (1990), the linear momentum equations of solid skeleton
and fluid for the porous bed based on the theory of poroelasticity may be written as

. 0’d* o’D* od*  oD*
V'UZ—PMW"‘PU—@IZ + <6t_ or )a (7)
* o’d o’D* od* oD*
V'S:—Plza—tz+ﬂzz—at2 _b< o o ) (8)
with
T =2Ge' + A(V - d")], (10)
* 1 * *\ 1
¢ =3[Vd + (Vd)'], (11)
8" = —nP?, (12)
pii = (1 =no)ps + pg; (13)
P2 = —Pas (14)
P2 = MoPy + Py, (15)
b= ,lll’lé/kp, (16)

where ¢* is the solid stress tensor; 7*, the effective stress tensor of solid; S*, the normal stress tensor of fluid;
d* and D*, the solid and fluid displacement vectors, respectively; P*?, the perturbed pressure of fluid inside
the porous medium; p,, the solid density; p,, the mass coupling effect (neglected in this study); no, the
porosity; u, the fluid viscosity; k;, the specific permeability; G and 4, Lame constants of elasticity; and I, the
identity matrix. -

Combining continuity equations of solid and fluid with equation of state of fluid and considering the
slight compressibility of fluid inside the porous bed, the porosity of porous bed is expanded by perturbation
and after linearization of the porosity, we can find
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op® K od* oD*

for perturbed pressure. In Eq. (17), K is the bulk modulus of compressibility of fluid inside the porous bed.
The following three boundaries: (i) free surface | y = & + n*(x, )|, (ii) channel bed interface | y = &"(x,1)],
and (iii) deep far field of porous bed [y — —oco] must satisfy boundary conditions.
On the free surface, a kinematic boundary condition exists as

an* aé*(l) ady«(l) 61/]* 677*
CUMCC AL 1
> & e a U (18)

and a dynamic boundary condition exists as

o0 M\?  fae )\’
(v+5%) +(55)

On the porous bed interface, the continuity of pressure gives

o) N 1
a 2

+gn"=0. (19)

P = p@, (20)
and the continuity of fluid flux gives
od* oD*
- [(l—no)a—_t—f—no 5 } =ny- (Ue, + V&), (21)

where

i () )\ () )

is the unit normal vector at the porous bed interface. Considering the kinematics of the porous bed in-
terface, we have

w0 ) o

ot ot Ox
and Eq. (23) will be used to solve £*. And the continuity of effective stresses of solid gives
n_; T =0. (24)
At the far field of porous bed, y — —oo, the boundary conditions are vanishing displacement vectors,
ie.,
d',D" — 0. (25)
If both |#*| and |£"| are much smaller than the relative wavelengths, it is more convenient to shift the
boundary conditions at free surface, y = h + n*(x, ), and porous bed interface, y = &*(x,¢), to y = h and
y =0 first before solving the boundary value problem. As conventionally, Taylor series expansions are

applied to the boundary conditions at the free surface (18) and (19) and at the porous bed interface (20)—
(23) by performing

) o )
Z m! gym’ z% m! Jym’

m=0 m=

respectively.
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Fig. 3. Schematic diagram inside boundary layer for the second wave.

As m = 0, the boundary value problem is linear, but as m > 1, the problem becomes nonlinear. For
nonlinear problems, the above Taylor series expansions at the mean interface (y = 0) are applicable for the
first and third waves, but not applicable for the second wave because there exists a boundary layer which
will render errors of the partial derivative in the vertical direction for the second longitudinal wave. This is
obviously indicated in Fig. 3. Fig. 3 shows that the length scale Ay will overestimate the displacement
potential of the second longitudinal wave because Ay is much larger than Ay, and it is more accurate to
evaluate the derivative by adopting the stretched length scale Ay’. That’s why Chen et al. (1997) failed to
solve the nonlinear problem for soft porous material by only one length scale expansion. To overcome the
difficulty, another small parameter, & = ky/k, other than ¢ = kpa needs to be proposed and furthermore,
the vertical coordinate y for the second wave will also be enlarged into )’ based on this small parameter &,
(see Eq. (42b)).

Referring to the work of Huang and Song (1993) for the decoupling processes of Biot’s equations of
poroelasticity, the governing Egs. (7) and (8) can be rewritten into three decoupled scalar equations as

Vo) +k2 V=0, j=1,2,3. (26)

Also, the perturbed pressure equation (17) gives

K
P*(2> p (1 —ny + OCll’lo)k @ (1 —ny + O(zi’lo)kZ <2> (27)
0
where the wave numbers, k;, and the sohd/ﬂuld related parameters, «;, are given as Eqs. (8)—(20) in the work
of Huang and Song (1993) In Eq. (26), <I> and fD are the displacement potentials of the first and the
second longitudinal waves, respectively; Whlle <P is the displacement potential of the third transverse
wave, i.e.,

=vor? 4 vo? 4 vN@Pe,), (28)

D' =, V&% + 0, VPP 4+ 03V (@ e,). (29)

Note that governing Egs. (5) and (26), pressure and effective stresses Egs. (6), (27), and (10), together with
boundary conditions (18)—(21), (24), and (25) form the complete boundary value problem of the present
study.
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2.2. Nondimensionalized governing equations and boundary conditions

Huang and Song (1993) defined the following parameters:

m= (2G+ A)ny/K, (30)
&= nopyw/b, (31)
2 _ MopPo + (l - no)ps w’ (32)

T 2G4+ (K/m) B

, i(m+1) py ?

hs)

)
II — = 33

me K k%' (33)
g2 _ Po + (1 = np)p, (li (34)

G 2’

in their solution of linear water waves propagating over a poroelastic bed. In which, ¢ is called the pene-

trability parameter; w, the frequency; and m, the stiffness ratio of solid and fluid. 4 and ¥ are only

functions of water wave speed and material (fluid and solid skeleton) properties; while IT is not only a

function of the same variables for 4 and ¥ but also depends on the permeability of porous medium.
For low penetrability, i.e., ||¢|]| < 1, Egs. (32)—(34) could be simplified to

A= (ki ko), (35)
= (ky /Ky, (36)
V2= (ks /ko)”. (37)

Moreover, for soft solid skeleton, ||k»|| > ||k || and such that ||IT*||=||k3/k3| > 1. Since ||4?|| is always
smaller than || ¥2||, we can obtain

147 < |#°]] < T <[22 (38)

Based on the above discussion, we herewith define

& = ko(l, (39)

& = k()/kz (40)

for later use.
After the tedious but straightforward analysis of order of magnitude for each dependent variable by
referring to Huang and Song’s (1993) solution, the dimensionless variables are selected as

x= k0x7 (41)
V= koy, (42a)
¥ =J/e, for the second longitudinal wave only, (42b)

{= gkof, (43)
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0= kon’, (44)
> = w/+/gko, (45)
2
‘jp*(l) — k() (15*(1)7 (46)
v gko
B = o), 47)
. kZ ek@hk2
#(2) __ «(2) _ #(2)
@, = ekohkék—?% = 8%—/120 o, (48)
937 = g, (49)
% k()ekOh *
0 :ﬁp*m, (51)
P&
po = Fo poy (52)
Po&
. k
U=—2_u. (53)
gko

All the symbols of variables on the left-hand side of Egs. (41)—(53) are dimensionless, but those on the right-
hand side are dimensional. Note that since multiple length scales in vertical direction are needed (Fig. 3), y
and )/ are proposed for the boundary layer correction approach.

Applying the two-parameter perturbation expansion, we can write the velocity potential of channel flow
and the displacement potentials of the two kinds of wave for the whole domain as

o) = 81¢ET0 + 8152(1’A7T1 + 8%&;0 + 0(8%827 i ')7 (54)

&% = g1l 4 e1eady + 2y + O(e,.. ), j=1,3. (55)

Due to Eq. (38), the second wave needs to be solved inside the boundary layer. The displacement poten-
tial of the second wave inside the boundary layer is nondimensionalized specially as Eq. (48) and is ex-
panded as

8% = adii) +eedi? + qdi +O(Ee ). 36)
if ||&2]| and ||&|| are smaller than unity. Also, the profile of water wave at the free surface becomes

i = erflyy + e162ffyy + €1 + Oleten, .., (57)
and that of the channel bed interface becomes

& =eaéy+and +68,+0@Ee,...). (38)

For a periodic motion with the frequency w, the aforementioned variables [ ]*(R, ) can be written as
[ ](R)e~™*, where R is the position vector. Let the given incoming-wave amplitude before being disturbed by
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the porous bed be a (i.e. ij;, = ) with a wave number k, and then Stokes expansion based on ¢; and &, will
be carried out only to the first three terms for the present nonlinear water wave problem to avoid the
occurrence of secular terms. Thus, after performing Taylor series expansions at the free surface and at the
channel bed interface respectively, the boundary value problem of each order without the time factor is
obtained in the following.

2.3. Boundary value problem for the first and third waves

2.3.1. 0O (g)
The governing equations are
region (1): —oo < x < 00, 0 <y < koh,

VAz(l';lo =0; (59)
region (2): —oo < X < 00, —00 <y <0,

V2l + A2y =0, (60)

V2his + Wiy = 0. (61)

The boundary conditions are
at the free surface: y = koh, —0o < X < 00,
(a) kinematic free surface boundary condition

qglo,y = —10M,, + Uﬁlo,xa (62)
(b) dynamic free surface boundary condition
—i‘b(f;lo + Ud;lo,x + 1139 = 0; (63)

at the porous bed interface: y = 0, —oo < x < 00,
(a) continuity of pressure

Can N ki 1
_ia Ud.+ 220 406l =9 64
10¢) + Uy + ekﬂhnopogqld) ) (64)
(b) continuity of flux
id)‘h(f;[llo]y - id’%ﬁb%,x + ekoh(l?’lo,y = U((Z’[llgw - ¢E[13(1xx)7 (65)
with
qul _l’l0+06jl’l(), j:153a (66)

(c) continuity of effective stress (only 7¢;=0)
2([)[110])()) + ‘19[130],7}7 - A[lz(i)e)e = 0; (67)
at the deep far field: ) — —o0, —00 < X < o0,
P —0, j=1,3. (68)

Note that only one component of the above boundary condition of continuity of effective stress is needed,
i.e. 735 =0, otherwise it will become overdetermined. (Another condition, 7;;=0, includes the effect of the
second wave and which will be adopted by the boundary layer correction for the second wave later.)
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The governing equations are
region (1): —oo < x < 00, 0 <y < koh,

VAZ(Z)H =0; (69)
region (2): —oo < X < 0o, —00 <y <0,

Vil + A2 =0, (70)

V2ol + w2l = 0. (71)

The boundary conditions are
at the free surface: y = koh, —00 < % < 00,
(a) kinematic free surface boundary condition

(l';ny = —iwf; + Uﬁlu» (72)
(b) dynamic free surface boundary condition
id)(f;n =1+ Uﬁll,)?; (73)

at the porous bed interface: y =0, —oco < X < o0,
(a) continuity of pressure

4 o kKA* o

—iogy + Udy; + m 1411 =0, (74)
(b) continuity of flux

id)qlqg[lll],y” - id"]s(f;ﬁx + ekohqgn = U(¢11 E (Z’[ﬁ]m)v (75)
(c) continuity of effective stress (only 7¢;=0)

2(15E11]xy + (f;[lal],}y (bn & (76)

at the deep far field: y — —o00, —0c0 < X < o0,
o =0, j=13. (77)

Again, only one component of the boundary condition of continuity of effective stresses is needed, i.e.
74 =0, for the same reason mentioned above.

2.3.3. O(af)
The governing equations are
region (1): —oo < x < 00, 0 <y < koh,

VAz(fszo =0; (78)
region (2): —oo < X < 00, —00 <y <0,
lgz ]
v2¢20 +5 klz 3 A2 2 =0, (79)
v2¢20 + lII2¢20 (80)

The boundary conditions are
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at the free surface: y = koh, —0o < X < 00,
(a) kinematic free surface boundary condition

<igzo,y + 2idily — Uﬁzo,.f = M105P10s — MoProys (81)
(b) dynamic free surface boundary condition
2106 + i + U = iMooy — H(Fhos + Bloy ) (82)

at the porous bed interface: y = 0, —oo < X < 00,
(a) continuity of pressure

koK N>

2id)¢20 - e"ﬂhnopog

4 A[zlg - UquO.f = %(qg%()r + qg%oy) + e '1’25,0 (Uél()u - id)(ﬁlo.y) +

(b) continuity of flux
wig ie(adl —add ) o6l 8 Yo w2 4w b Liowletni (g all L g g
€ ¢20‘_}’+ 10 ql‘{bzo,}; G3P504 d’zo_xp ‘{bzo,;-)e $104P105 §10¢10‘yy+1w € C10,% qld)lo;"‘q}({bm,ﬁ

- id)lpzeikohélo (qlfi)[ll(l.)‘ry - 61345[1§ﬂ)
+ UPRehhé, (43[1](1,@; - dﬁuy), (84)
(c) continuity of effective stress (only 7¢=0)

G<2€b[zlg.xjﬁ + ¢[2:ly1 - ﬁb[zgxx) = gjzefkohémx PG(EI)%.,& + (b[lﬂ)n) - /1/12‘2’51(1 - GW2€7k011510 (2¢[11(1W + (/’[13(;.@; - (r[)[lg\n)] ;

(85)
at the deep far field: y — —o0, —00 < x < 00,

Py —0, j=1,3, (86)

where lgj and &; (j = 1,3) in nonlinear order ¢} are given as Egs. (8)—(20) in the work of Huang and Song
(1993), and

g =1—-ny+any, j=13. (87)

Again, only one component of the boundary condition of continuity of effective stresses is needed, i.e.
745 =0, for the same reason mentioned above.

2.4. Boundary layer correction for the second wave

The second wave disappears outside the boundary layer but it does exist inside the boundary layer, so the
complete solution needs to be corrected by further considering the second wave inside the porous material
bed. When the perturbation expansion is expanded to the first two terms, the problem is only a linear
problem. While it is expanded to the first three terms, the problem becomes a nonlinear problem. Since a
thin boundary layer exists within the porous bed near the water/porous-bed interface, multiple length scales
are necessary to solve the nonlinear boundary value problem for the second longitudinal wave (Fig. 3). We
therefore let y/ = y/e, to change the scale from j to the magnified scale y in Eq. (42b). The difficulty, the
error due to the first partial derivative based on y of the displacement potential of the second longitudinal
wave, that Chen et al. (1997) encountered is now overcome by proposing two length scales in the vertical
direction. After the coordinate transformation of Eq. (42b), the boundary value problem of the displace-
ment potential of the second longitudinal wave inside the boundary layer is as follows.
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24.1. 0 (¢)
The governing equations are
¢E[12(}4y’y’ + ¢E[]2(l =0. (88)

Boundary conditions: y = 0, —oo < x < 00,
(a) continuity of pressure

Py =0, (89)

(b) continuity of effective stress (only 7;;=0)

2GA2¢10} y j‘Azé[lz(} = ;“A2¢;[ll(l - 2G(¢10 o d)ley) (90)
Note that the boundary condltlon of contlnulty of ﬂux is equivalent to Eq. (89), and the boundary con-
dition of ;=0 just satisfies gbl(m = qu”, Le. d)ley’ = 0. However, ¢120x , =0 aty’ = 0 is automatically

satisfied by referring to Eq. (89). So only one component, 7;; =0, of the effectwe stress boundary conditions
is needed to solve qsfg

The governing equations are

¢1]yy’+¢[121] - (91)

Boundary conditions: y/ =0, —oo < X < 00,
(a) continuity of pressure

¢l =0, (92)

(b) continuity of effective stress (only 7;;=0)

26448, - 18 = 1220 - 26(dlL, - 8L 9
2.4.3.0 (&)
The governing equations are
¢20y’1’ + ¢20 - (94)

Boundary conditions: y/ = 0, —oo < X < 00,
(a) continuity of pressure

qz¢2o + l‘yzfl 7k()hqz¢11y/ =0, (95)
(b) continuity of effective stress (only 7, =0)
2GA2$[22(l,y’y’ - /lAzqg[Zzg = 726<q§[21(1yt - (13[230])2)1) + /1/12(};20 'Pzé Ueik“h \‘2G<¢10yyy + Azd’ll}yy é?&fy})
/“A2 (¢10) + (blll )J (96)

The reasons for adopting only two boundary conditions in O(g &) and O(e?) are the same as those de-
scribed in O(g).
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3. Analytical solution

After the time factor e is omitted, the given incoming water wave profile with magnitude a is
Nio(x) = ae®™* (0 < x < 0). (97)

With the input of incoming water wave, each order of the aforementioned boundary value problem can be
solved in sequence as shown in Table 1. Table 1 indicates that one must first find the solution of order ¢
outside the boundary layer, and subsequently proceed to match with the inner expansion to complete the
solution of order ¢;. Then, the solution of order ¢ provides the possibility to solve the higher orders in
sequence as indicated by the solid arrows as shown in Table 1. Note that the problem of order &;¢; is solved
simultaneously to find the unique solution. Thus, the dimensional solutions of the first longitudinal wave
and the third transverse wave throughout the entire domain are obtained as follows.

3.1. 0 (¢)
1 gko . g x
P10 = 2 leU—o cosh ko(h — y) — (kU — o) sinh ko(h — y) | €™, (98)
[11(1 _ ek{)ikz aek koy+ik0x7 (99)
5 _ ekoikz ayekohorikor (100)

with the dispersion relation of a complex wave number, k&, as

T- .
gko + j (koU — w)z] sinh (koh) = | Ty + (koU — wﬂ cosh (koh), (101)
0
where
_ Mopog . .
2=7T 0 (qla)Kl -+ 1q3Q)L1 — koUKl — lk()ULl)(koU — (1)) (102)
koKA q1

Table 1

Relation among solutions of each order

Outside boundary layer Inside boundary layer Wave number
() _ 0 k,
O(£8,) <4— p O(£€,) k,

O(&) -  O() 2k,
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3.2. O (g¢)
o1 = Y £ | cosh ko(h — ») — ("OZT“V sinh ko(h — ) | €%, (103)
0
d)[lll] _ ekoikg ¢ eKikortikor, (104)
(f)[f]] _ ekoikg cyekakoytikor (105)
I kbviig(a)—-hJ])E5é“x. (106)
3.3.0 (&)
by = \/T [E3cosh 2ky(h — y) + E4 sinh 2ko(h — y)]e?*o, (107)
kg
) = e, (109
8 = e, (109
N = koUg— p (koUl— p + %>€2ik‘)x. (110)

The aforementioned coefficients of the solutions in each order are listed in Appendix A.
The dimensional solutions of the second longitudinal wave obtained by the boundary layer correction
approach are as follows.

O(e1)
a k2 iko(x—(y/e
qb[lg k2ek0h k_;zeku( v/ 2)>, (111)
with
a 2GK2 AA 21GK3 a (112)
2T QG+UA21 (2G+ A2
O(¢e18)
R & k iko (x—(v/e2
s *kgekohk_%ek()( O/e2)) (113)
with
1 2 2 .
Cy = m [(ZGNl — }.A )C] — 21GN3C3} . (114)
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(&)
o b K oo
i = kgekoh éeko(h v/ z)), (115)
with
1 . . .
D = m{efw’(allﬁ — 1a3)[(2GK13 — 21GK1 — ;LAzKl)a] — 1G(3K32 + l)a;
+1(2G + 2)A%cy) + (2GM? — JA*)b; — 4iGM;b3 }. (116)

After solving the displacement potentials, all the other variables can be obtained. The wave profile of
porous bed from Eq. (23) gives

E(x) = a(Kjay — ias)e o 1 g qelor k(e K\ —iay A — ic3)

=+ &1 ge2ik0x—2k0h{(]<lal — ia3) ’V(Klz + 1)a1 — 02/12 — 21K3a3—‘ + 2b1M1€k0h — 4ib3€k0h}, (117)

and the free surface of homogeneous water is

o aikor lag — kU )E-efo ag gko L iEu ke | Rikor 118
W(x) ac +\/g70(w 0 )56 +k0U*CO kU — o 1L41/ Ko € . ( )

3.4. Wave number solver by Runge—Kuttal Newton—Raphson method

So far, the problem of solving the wave number from the dispersion relation has bothered researchers for
many years due to the difficulty of convergence of the roots. As to the present work, the wave number is
complex and thus it is more difficult to find the roots than that of traditional water wave. Since the for-
mation of bed forms is related to the flow, the current effect should be certainly taken into account. If a
current, U, is given, the corresponding wave number, &y, could be found by solving the dispersion relation
of Eq. (101). However, Huang and Chiang (1998) searched for the wave numbers by inputting arbitrarily
chosen currents and obtained discrete results. It is not only time-consuming but also apt to improper
categorizing. To avoid wrong grouping and save much time, the present study proposes a faster and
smarter algorithm as shown in Fig. 4. The flow chart indicates that the wave numbers with given different
currents could be traced out continuously by the Runge-Kutta method once an initial solution is found,
and then the Newton-Raphson method is adopted to promote the accuracy of &, to fit the dispersion
relation better. This algorithm has transformed the original dispersion equation into an ordinary differ-
ential equation by the following steps.

At first, rewrite Eq. (101) as a new function f,

f:g@+£Q@U—@ﬂmm@my[n+mw—wﬂcmm@mzm (119)
0

and then take total derivative of Eq. (119), i.e.

of
df = o dho +

of

s-du=o. (120)
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Select porous bed material, wave and flow conditions

y
Solve (k, ,k, , k) inside porous bed

A 4

Find out (U ,k o) from dispersion relation
by Newton-Raphson method

A

U=U+AU

Check if U >U . [

Find k, corresponding to U

Check if k,, satisfies

dispersion relation[]

P E— Ouput U, k,, F,, )

Fig. 4. Flow chart of wave number solver by Runge-Kutta/Newton—-Raphson method.

Rewrite Eq. (120) as

dko Y
o= -5 (121)
ako

where
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d )
_aI{ = sinh (koh)(g — (c(koU — @)’ QUIGK + UK (K2 — 4k%) — ok?kiqy + 20k2K3H2 (21 + ¢3)
0

k2
— doki(K(q1 — ¢3) + Ka)))) / (ké(ki = 26)%) /1= 4+ 3eU kU — m)
0

— cosh (koh) (2U (kU — @) — (cglhkoU — ) (2Ukoks + Ukahs (k3 — 4ky) — wkikiq

2
+ 20k5k K5 (2q1 + ¢3) — doky (K (91 — ¢3) +K543)))) / <(k0k§ - 2)" [1 -2
0
+ cgkoUt; + Cg(k()U — 60)13) + hcosh (k()h) (gk() + C(k()U — w)3t3>
+ & sinh (koh) (kU — @)(0 — ko(U + cgt3)), (122)
0 1 K.
% =k ( — 2cosh (koh)(keU — w) + WK (c 1- k—é(smh (koh) (keU — w)2(6wk§(q1 —q3)
— k%(co — 4k()U + 3COL]1)) + gk() cosh (k()h) (k%(a) — 2k()U + (Uql) + 2wk§(q3 — ql)))> ) s
(123)
with
0Py
= 124
‘T Kkq (124)
1 = 5(Ukok3 — ok3qy + 20k (q1 — ¢))
fh= - . (125)

2K~

Now Eq. (121) is an initial value problem, and it is solved by the fourth-order Runge-Kutta method
(Press et al., 1992) in this study. Moreover, since this problem has been transformed into an initial value
problem, all the other solutions could be guaranteed of the same family with a given initial value. In other
words, all the solutions of the same line stand for the same kind of bed forms under different flow con-
ditions.

4. Results and comments

Since the solution of Chen et al. (1997), which adopted a one-parameter perturbation for soft porous
bed, failed due to the existence of a boundary layer, and the second longitudinal wave decays very quickly
in the vertical direction near the interface, a two-parameter expansion based on ¢ = koa and & = ko /k,
needs to be proposed for the present work. Especially inside the boundary layer, the correction of the
second wave is reformulated to complete the boundary value problem. However, this work is constrained to
ller]|'? > |leal| > [le1])* before liquefaction by comparing layer 2 with layer 3 of Fig. 2.

From Egs. (117) and (118), the profiles of free surface and channel bed are very dependent on both the
flow and the material. Therefore the analysis of the bed forms by Kennedy (1963) is not complete due to
considering flow conditions only but without concerning bed material. To confirm the validity of the
proposed solution, the material property of a soft porous bed in Table 2 is selected, and Fig. 5 provides the
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Table 2
Flow conditions and property of soft porous bed material

Items Notations Values Units
(a) Water
Density Do 1000 kg/m?
Bulk modulus K 23 x10° N/m?
Dynamic viscosity u 0.001 Ns/m?
Depth h 2.0 m
Wave amplitude a 0.2 m
Period T 2.0 s
Current U 0.01-15 m/s
(b) Skeleton
Density 0y 2650 kg/m?
Lame’s constant G 5.0 x 10* N/m?
Lame’s constant A 1.0 x 10° N/m?
Specific permeability ky 1.0 x 1071 m?
Porosity ny 0.4

2.8

2.4

2.0

1.6

Fn 1

1.2

0.8

0.4 —

0.0 — 7 T T T T T T T

0 2 4 6 8 10 12 14 16 18
Re (k,h)

Fig. 5. Bed form envelope of Froude number versus dimensionless wave number (wave period =2 s).

bed form simulation result of Froude number (F, = U/+/gh) versus dimensionless wave number (Re(kgh)).
The line in Fig. 5 delineates a bed form envelope curve under a given soft material and different currents,
which means the maximum possible Froude number for the occurrence of long-crested features, as that in
Fig. 9 of Kennedy (1963).

To predict various formations of bed forms, the same porous bed material in Table 2 is adopted to
simulate the bed form category of dissipative parameter (log(Im(ky)/Re(ko))) versus dimensionless lagged
distance (Re(ky)d/m) as shown in Fig. 6. In which, ¢ is an ambiguous lagged distance of sediment discharge
from flow velocity suggested by Kennedy (1963). And, it just equals the phase difference between w&™/ky
from Eq. (117) and the perturbed velocity component u*(!) from Eq. (4). From Kennedy’s (1963) instability
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20 — + fd
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Re(k,)d/

Fig. 6. Dissipative parameter versus dimensionless lagged distance (wave period =2 s and depth=2 m).

analysis, it was found that only when Re(k)d/m equals 0 and 1, there are stable bed forms; otherwise the
bed forms are “unstable”. Fig. 6 indicates that there are several bed forms to be found out including dune
moving downstream (dd1, dd2 and dd3), dune moving upstream (du), antidune moving downstream (ad1
and ad2), antidune moving upstream (au), rapidly damping wave (i.e. flat bed) moving upstream (fu), and
rapidly damping wave moving downstream (fd). It is noticeable that the solutions of the same kind of bed
form are on the same line, which is continuously traced out by the solver as shown in Fig. 4, and the rapidly
damping waves are defined to dissipate very quick, say the imaginary part of the wave number is larger than
the real part of the wave number by ten or even more. So, the flat bed exists at larger dissipative parameters
but the stable dune and antidune exist at smaller dissipative parameters. The dimensionless lagged distance
Re(kp)o in this study is found to be 0, 7, or 2 for stable dune and antidune when the dissipative parameter
goes down. The results not only confirm Kennedy’s (1963) conclusion about ¢ for stable bed forms, but also
provide correct information of rapidly damping bed forms (instead of “‘unstable” bed forms that grow to
infinity given by Kennedy’s (1963) analysis) such as flat bed and some rapidly damping dune and antidune
that Kennedy (1963) did not get.

For further study, some physical quantities are illustrated to show the current effect (U = 0, 0.1, 0.5 and
1.0 m/s) and the simulation results are compared in Figs. 7-10. Fig. 7 shows the pore pressure under four
different currents. The pore pressure is getting smaller when the current effect is getting stronger. Py in Fig. 7
is the perturbed pressure on bed at y = 0. In Fig. 8, near the interface (y = £*(x,¢)), the effective stresses 7,
and 1,, become larger due to larger dilatation for stronger currents, and t,, is very close to zero, but it
becomes larger for larger currents due to the stronger velocity gradients. In Fig. 9, the displacements of
solid and fluid fluctuate more drastically for larger currents. Fig. 10 shows the profiles of channel bed and
free surface. In Fig. 10(a), the free surface profiles are unchanged under different currents. This is because
that the amplitudes of given waves are very small in the example. While in Fig. 10(b), the channel bed
interface profiles fluctuate as the displacements of solid of Fig. 9 do. Therefore the present solution not only
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Fig. 7. Variation of pore pressures under different currents.

gives the formation mechanics of bed forms under the nonlinear oscillatory water waves and the current
effect, but also shows the validity of Biot theory for a soft porous bed.

5. Conclusions

Since for a soft poroelastic bed there exists a boundary layer inside the porous bed and the wavelength of
the second longitudinal wave is much shorter than that of the water wave, higher order Stokes expansion of
water wave based on & = kpa is invalid, i.e. one-parameter perturbation failed (Chen et al., 1997).
Therefore, considering the second length scale based on the second longitudinal wave is necessary, and thus
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Fig. 8. Variation of effective stresses under different currents (a) xx, (b) yy and (c) xy component.
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Fig. 9. Variation of displacements under different currents.

a two-parameter perturbation expansion based on ¢ = koa and ¢ = ky/k, is proposed. In addition, the
second wave vanishes outside the boundary layer but exists inside it, so the complete solution of the dis-
placement potential needs to be corrected inside the boundary layer. The complete boundary-value-
problem is solved systematically by the boundary layer correction approach in the present study.

In spite of different approaches, the present work not only confirms the stable dune and antidune of
Kennedy (1963), but also finds rapidly damping waves that Kennedy (1963) could not get. Moreover, the
present study proposes a solver to continuously trace out the wave numbers of the same kind of bed forms
and gets higher accuracy by adopting a new Runge-Kutta/Newton—-Raphson method. Finally, the di-
mensionless lagged distance Re(ky)o confirms Kennedy’s (1963) comment and is found to be 0, «t, or 2 for

stable dune and antidune while the dissipative parameter goes down as shown in Fig. 6.
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Fig. 10. (a) Free surface profiles and (b) channel bed interface profiles under different currents (wave period =2 s).
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Appendix A. Coefficients of the solutions of the first and third waves in each order
Al O ( £l )

jefo" gko

L= CU(I(,]]K] 76]3L1) — U(lK] 7L1) koU* (0]

a sinh (koh) — (koU — w) cosh (koh) |, (A.1)

ay = —Llal, (A2)
2iK,
= A3
el (A-3)
k2
K=1-A=1-71, (A4)
kO
k2
K=1-v=1-23. (A.5)
k()
A.2. O (5162)
ar A2 (gko)™* .
E5 = % { {koU + wqr +K;2(OJQ2 — koU) — quﬂ ry — ZICOKl(ql — q2)}"3}, (A6)
i 1
c = ]%/12411{1 +[_(1 +K§) [(koU — a))a)CoKl(ql — QQ)Vl —|—gk0r2t1]}, (A7)
1 2
2 2
c3 = g/l al[(koU — a))a)COKl(ql — LIQ)I"I +gk0[1}"2], (Ag)

th = (K()U — CL))C()KI ’V — koU — W(q1 +N$(K0U — (,Uql) +2(DCI3—‘I"1 — [(1 —|—K32)I"2 —|—2i_K17'3—‘gkoll, (A9)

11 = | (kyU — w)* cosh (koh) — gkosinh (koh)|, (A.10)

ri = "' | gkocosh (keh) — (koU — w)”sinh (koh)|, (A.11)
(2GK} — 24%)

=L = o+aq, A12

m (26 + /1)/12 q2 T 41 ( )

2iGK;
- =7 A.13
r3 (26 + /1)/12 92 ( )
nopPo&
Co = , A.l4
" kK A2 (A.14)

q> = 1-— ny + oxng. (AIS)
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A.3. 0 (&2)

_ Sufafu+ fufsafn = fiafafn — fisfafi

E; = )
: Sufnfi — fufafn — fitfafi
2 ) Sivek i 1 )
Ey =— — E S — _
*= (koU — )°E5 + ol — @) 2 (ghe) " (koU — 30)(koU — )",

1
by :E(fm — fuEs),

1
by =~ (fs — fub1),
3 f32(fsa Sfa1b1)

—2i 2 2 .
=—— (kU — h (2koh) — — (koU — h (2koh
it =2 (U = ) cosh () ~ (ko — )sinh (o)
kK AG,
ﬁz - ekohn0p0g7

(gko)’ — (kU — o)
2gko(keU — w)*

fio=— [3 L (kU = 30) (kU - a))3] sinh (2koh) +
(gko)

koK A?
x [sinh (koh) 0

—— (0K, —ia3)a1q,1K,,
ez"ohnopog( 1A 3)argiK,

1
e (koU — w)* cosh (koh)] +
0

4 .
for = el { (kyU — w)* cosh (2koh) — 2sinh (2k0h)} ,

gko
2i
f22 = \/gTO(qlwikOU)Mlv
4
.f23 = \/g—ko‘(q3w - kOU)7
3i\/gk() 1 2 2is/gk0 .
— ekoh _ _ _ _ _
ﬁ4 e"" cosh (2](0/’!) kOU o (gk0)3/2 (k()U 3(,0) (koU CL)) kOU o (a1K1 1(13)
x [cosh (koh) — — (koU — )’ sinh (k h)] M @k — ias) i1 + K)
- — - — ——=(a1K| —1a3)|1a
0 ko 0 0 \/g—ko 1451 3 1491 1

+ 2a3q:Ks0 — kU (ia1 K} + a3K3) |,
fu1 = 4ie™" GM,,
S =e""G(M; + 4),

S = —(a1K —ia3)[i(2G + 24> + 2GK})a, + GK3(K3 + 3)a3 ],
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(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

4
+ eikoh(éhK] — ia3)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)
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2
Ml2 =4 — —12, (A.30)
kO
pe:
M32:4__§- (A.31)
kg
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